2025年高职单招每日一练《生物》3月4日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:139

试卷答案:有

试卷介绍: 2025年高职单招每日一练《生物》3月4日专为备考2025年生物考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 在19世纪中叶以前,英国曼彻斯特地区的桦尺蛾几乎都是浅色型(s)的,随着工业的发展,工厂排出的煤烟逐渐将树皮熏成黑褐色,到了20世纪中叶,黑色型(S)的桦尺蛾成了常见类型。下列与此相关的叙述正确的是()  

    A自然选择的方向发生了改变,所以自然选择是不定向的

    B桦尺蛾种群进化过程中接受选择的是各种基因型的个体

    C该地区桦尺蛾种群进化过程中Ss的基因型频率不会改变

    D长时间的环境污染导致s基因定向突变成S基因

  • 2. 酵母菌进行有氧呼吸和无氧呼吸的共同终产物是()

    AH2O

    BCO2

    C酒精

    D乳酸

  • 1. 下列选项中,能体现基因剂量补偿效应的有()(多选)。  

    A雄性果蝇X染色体上的基因转录量加倍

    B四倍体番茄的维生素C含量比二倍体的几乎增加一倍

    C雌性秀丽隐杆线虫每条X染色体上的基因转录量减半

  • 学习以下资料,回答下列问题。 ABC转运蛋白 ABC转运蛋白是分布极广的一类膜蛋白家族。典型的ABC转运蛋白是一种单向底物转运体,可结合ATP并使之水解产生能量以实现对各类底物分子的跨膜转运,包括某些离子、糖类、氨基酸及原核细胞分泌蛋白等。 根据底物分子的运输方向,ABC转运蛋白可分为外向转运蛋白和内向转运蛋白,外向转运蛋白存在于所有生物体内,而内向转运蛋白仅存在于细菌和植物中。 如图所示,ABC转运蛋白通常由TMD和NBD组成。TMD的作用是构成介导底物穿过细胞膜的机械性通道,NBD与ATP水解相关。在不同的转运阶段,两个NBD的结合状态与开口方向是动态变化的,NBD接收信息后,结合ATP并水解产生能量,进而控制TMD空间结构的变化,以完成对底物分子的转运。其中外向转运蛋白的TMD可以直接与在胞内的底物分子结合,启动整个转运过程。而内向转运蛋白则是外周蛋白SBP捕获识别底物,形成底物-外周蛋白复合体后呈递给TMD,进而使处于外周蛋白中的底物分子脱落,并通过TMD结构进入胞内。基于对ABC转运蛋白的晶体结构的解析可知,SBP与TMD、TMD与TMD之间是通过改变构象来完成对底物的摄取、传输和释放的。 ABC转运蛋白在细胞中普遍存在,研究其结构与作用机制对人们进一步认识生命、治疗相关疾病具有重要意义。

    2. 结合本文信息分析,以下过程合理的是()。  

    A大肠杆菌通过ABC外向转运蛋白分泌蛋白质

    B植物细胞通过ABC内向转运蛋白吸收

    C动物细胞通过ABC内向转运蛋白吸收氨基酸

    D动物细胞通过ABC外向转运蛋白排出Cl-

  • 1. 阅读科普短文,回答问题。 当iPSC“遇到”CRISPR/Cas9 诱导多能干细胞(iPSC)技术和基因编辑技术(如CRISPR/Cas9)在当今生命科学研究中发挥着极其重要的作用,分别于2012年和2020年获得诺贝尔奖,都具有里程碑式的意义。当iPSC“遇到”CRISPR/Cas9能创造出什么样的奇迹呢? 1958年,科学家利用胡萝卜的韧皮部细胞培养出胡萝卜植株,此项工作完美地诠释了“高度分化的植物细胞依然具有发育成完整个体或分化成其他各种细胞的潜能和特性”。然而,对于高度分化的动物细胞而言,类似过程却不那么容易。 2006年,科学家将细胞干性基因转入小鼠体细胞,诱导其成为多能干细胞,即iPSC。该技术突破了高度分化的动物细胞难以实现重新分裂、分化的瓶颈,为进一步定向诱导奠定了基础,也为那些依赖于胚胎干细胞而进行的疾病治疗提供了新的选择。但是,这种技术需通过病毒介导,且转入的细胞干性基因可能使iPS细胞癌变。 直到2012年,研究人员发现一种源自细菌的CRISPR/Cas9系统可作为基因编辑的工具,能对基因进行定向改造。例如,研究者将β-珠蛋白生成障碍性贫血病小鼠的体细胞诱导成iPS细胞,再利用CRISPR/Cas9对该细胞的β-珠蛋白基因进行矫正,并诱导该细胞分化为造血干细胞,然后再移植到障碍性贫血小鼠体内,发现该小鼠能够正常表达β-珠蛋白。 两大技术的“联手”,将在疾病治疗方面有更广阔的应用前景。 (1)由于细胞干性基因的转入,使体细胞恢复了()的能力,成为iPS细胞,进而可以定向诱导成多种体细胞。诱导成的多种体细胞具有()(填“相同”或“不同”)的遗传信息。 (2)iPS细胞诱导产生的造血干细胞向红细胞分化的过程中,β-珠蛋白基因可以通过()和()过程形成β-珠蛋白。 (3)结合文中信息,概述iPSC和CRISPR/Cas9技术“联手”用于疾病治疗的优势:()。  
  • 2. B型血友病是编码凝血因子9的F9基因突变所致的一种遗传病。我国科学家构建了B型血友病模型小鼠,并尝试对模型鼠进行基因治疗,以探索治疗该病的新途径。 请回答问题: (1)图1表示该病的发病机理。其中①过程所需要的酶是(),②过程称为(),③过程表示F9基因发生碱基的()而引起碱基序列的改变,④代表的碱基序列为()。 (2)科学家利用基因编辑技术对血友病模型鼠的突变基因进行定点“修改”,并测定凝血时间,结果如图2所示。结果表明基因治疗的模型鼠凝血能力(),依据是()。  
  • 1. 某地蝽象的喙长而锋利,可刺穿无患子科植物的坚硬果皮,获得食物,如图1所示。 1920年引入新种植物—平底金苏雨树,其果皮较薄,蝽象也喜食,如图2所示。调查发现,当地蝽象喙的长度变化如图3所示。 (1)蝽象的长喙与短喙为一对相对性状。分析图3可知,引入平底金苏雨树后的60年间,该地区决定蝽象()的基因频率增加,这是()的结果。 (2)蝽象取食果实,对当地无患子科植物种子的传播非常重要,引入平底金苏雨树后,当地无患子科植物种群数量会()。无患子科植物果实的果皮也存在变异,果皮较()的植株更容易延续后代。 (3)进化过程中,当地无患子科植物、平底金苏雨树和蝽象均得以生存繁衍,这是物种间的()结果。
  • 2. P酶在陆生植物合成木质素和黄酮类等代谢产物过程中起重要作用,可催化苯丙氨酸脱氨基。最新研究发现了能同时催化苯丙氨酸和酪氨酸脱氨基的PA酶。 (1)P酶与PA酶均为蛋白质。二者在细胞的()(填细胞器名称)中,以氨基酸为原料经()反应合成。 (2)研究人员对比不同类群植物的两种酶,发现二者均具有与脱氨基功能密切相关的“丙氨酸一丝氨酸一甘氨酸”序列,还发现8个位点的氨基酸种类不同。 ①不同种类氨基酸的差异在于其()不同。 ②P酶与PA酶的第121与123位点氨基酸差异较为稳定。将P酶121和123位点的氨基酸与PA酶相应位点的氨基酸互换,模拟酶与酪氨酸的结合情况,结果如下表。 上述结果说明,这两个位点的氨基酸种类不同,导致两种酶的()不同,进而催化的反应物不同。这在分子水平上体现了()是相适应的。 (3)与只含P酶的植物相比,含PA酶的禾本科植物能同时利用苯丙氨酸和酪氨酸,参与合成木质素和黄酮类等代谢产物,增强了禾本科植物()环境的能力,使其分布更广。
  • 1. 学习下列材料,回答(1)~(3)题。 mRNA技术带来新一轮疗法革命 蛋白替代疗法一般用于治疗与特定蛋白质功能丧失相关的单基因疾病。由于酶缺失或缺陷引起的疾病可以用外源供应的酶进行治疗。例如,分别使用凝血因子VⅢ、凝血因子IX治疗A型、B型血友病。然而,一些蛋白质的体外合成非常困难,限制了这种疗法在临床上的应用。基于mRNA技术的疗法,是将体外获得的mRNA递送到人体的特定细胞中,让其合成原本缺乏的蛋白质,从而达到预防或治疗疾病的目的。 把mRNA从细胞外递送进细胞内,需借助递送系统。递送系统能保护mRNA分子,使其在血液中不被降解。纳米脂质体是目前已实现临床应用的递送系统,可以保证mRNA顺利接触靶细胞,再通过胞吞作用进入细胞。 研发mRNA药物遇到一个难题:外源mRNA进入细胞后会引发机体免疫反应,出现严重的炎症。科学家卡塔琳·考里科和德鲁·韦斯曼成功对mRNA进行化学修饰,将组成mRNA的尿苷替换为假尿苷(如图甲所示),修饰过的mRNA进入细胞后能有效躲避免疫系统的识别,大大降低了炎症反应,蛋白合成量显著增加。两位科学家因此获得2023年诺贝尔生理学或医学奖。 理论上,蛋白质均能以mRNA为模板合成。因此有人认为mRNA是解锁各类疾病的“万能钥匙”,可以探索利用mRNA技术治疗蛋白质异常的疾病,达到精准治疗的目的。 (1)推测用于递送mRNA的纳米脂质体中的“脂质”主要指() (2)尿苷由一分子尿嘧啶和一分子核糖组成,一分子尿苷再与一分子()组合,构成尿嘧啶核糖核苷酸。将mRNA的尿苷替换为假尿苷,其碱基排列顺序()(填“改变”或“未改变”)。mRNA进入细胞质后,会指导合成具有一定()顺序的蛋白质。 (3)文中提到,mRNA是解锁各类疾病的“万能钥匙”。图乙为用mRNA技术治疗疾病的思路,请补充I、Ⅱ处相应的内容。I.();Ⅱ().
  • 2. 学习以下材料,请回答(1)~(4)题。 染色体融合与物种演化 在生物演化历程中,啮齿类动物大约经过100万年才会出现3.2~3.5次染色体融合。我国科学家首次实现了哺乳动物的人工染色体融合。他们将小鼠(2n=40)胚胎干细胞中一条4号染色体和一条5号染色体首尾相连(如图a),获得了Chr4+5的胚胎干细胞。他们还通过不同方式连接细胞中的1号染色体和2号染色体(如图b),分别获得了Chrl+2和Chr2+1的胚胎干细胞。 利用不同的胚胎干细胞最终培育出113个Chr4+5胚胎、355个Chrl+2胚胎以及365个Chr2+1胚胎,将这些胚胎分别转移到代孕鼠子宫内。其中Chr2+1胚胎寿命均不足12.5天,无法发育成小鼠,Chr1+2和Chr4+5的胚胎均能发育成小鼠。研究发现,8周龄的Chr1+2小鼠比野生型焦虑且行动迟缓,而Chr4+5小鼠的表现与野生型相似。进一步测试这些小鼠的生殖能力,只有Chr4+5小鼠和野生型交配产生了后代,但生殖成功率明显低于野生型,这反映出染色体融合对新物种的产生可能起重要作用。 尽管本研究对基因中碱基序列的改变比较有限,但小鼠出现的异常行为和繁殖力下降等现象,表明染色体融合对动物可能会产生重大影响,提示染色体融合是物种演化的驱动力。 (1)染色体是真核生物()的主要载体。 (2)小鼠的人工染色体融合是可遗传变异来源中的()变异。据文中信息判断, Chr4+5小鼠体细胞中有()条染色体。 (3)依据文中信息,染色体融合对小鼠产生的影响有() (4)从进化与适应的角度判断染色体融合是有利变异还是有害变异,并说明理由:()