2025年成考高起点《数学(理)》每日一练试题04月25日
精选习题
2025-04-25 12:28:15
收藏

单选题

1、参数方程为参数)表示的图形为()

  • A:直线
  • B:圆
  • C:椭圆
  • D:双曲线

答 案:B

解 析:即半径为1的圆,圆心在原点

2、命题甲:实数a,b,c成等比数列;命题乙:b2=ac,则甲是乙()。  

  • A:充分条件但不是必要条件
  • B:必要条件但不是充分条件
  • C:充分必要条件
  • D:不是充分条件也不是必要条件

答 案:A

3、直线2x+y+m=0和直线x+2y+n=0的位置关系是()。

  • A:平行
  • B:垂直
  • C:相交但不垂直
  • D:不确定

答 案:C

解 析:

4、设函数f(x)=ex,则f(x-a)·f(x+a)=()。

  • A:f(x2-a2)
  • B:2f(x)
  • C:f(x2)
  • D:f2(x)

答 案:D

主观题

1、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  

答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  

2、已知am=,an=,求a3n-4m的值。  

答 案:

3、已知x+x-1=,求x2+x-2的值。

答 案:由已知,得

4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

填空题

1、与已知直线 7x+24y-5 =0 平行,且距离等于3的直线方程是______。  

答 案:7x+24y+70=0或7z+24y-80-0

解 析:

2、y=lg(sinx)的定义域是______。  

答 案:2kπ<x<(2k+1)π(k∈Z)

解 析:sinx>0∴x属于第一、二象限,所以 2kπ<x<(2k+1)π(k∈Z)

更多推荐
微信扫码添加老师微信