2025年成考专升本《高等数学一》每日一练试题03月26日
精选习题
2025-03-26 11:26:08
收藏

单选题

1、设则y'=()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:

2、曲线与其过原点的切线及y轴所围面积为()  

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:设(x0,y0)为切点,则切线方程为联立得x0=1,y0=e,所以切线方程为y=ex,故所求面积为

3、若f(x)为[a,b]上的连续函数,则()。

  • A:小于0
  • B:大于0
  • C:等于0
  • D:不确定

答 案:C

解 析:f(x)为[a,b]上的连续函数,故存在,它为一个确定的常数,由定积分与变量无关的性质,可知=0。

主观题

1、已知当x→0时,是等价无穷小量,求常数a的值。

答 案:解:因为当x→0时,是等价无穷小量,所以有解得a=2。

2、已知f(π)=1,且,求f(0)。

答 案:解:采用凑微分和分部积分后与相加,代入条件即可求出f(0)。因为

所以
又f(π)=1,所以f(0)=2。

3、设函数,问常数a,b,c满足什么关系时,f(x)分别没有极值、可能有一个极值、可能有两个极值?

答 案:解:此函数在定义域(-∞,+∞)处处可导,因此,它的极值点必是驻点即导数等于零的点,求导得由一元二次方程根的判别式知:当时,无实根。
由此可知,当时,f(x)无极值。
时,有一个实根。
由此可知,当时,f(x)可能有一个极值。
时,f(x)可能有两个极值。

填空题

1、设y=(x+3)2,则y'=()。

答 案:2(x+3)

解 析:

2、()

答 案:

解 析:

3、广义积分=()。

答 案:

解 析:

简答题

1、给定曲线与直线y=px-q(其中p>0),求p与q为关系时,直线y=px-q的切线。

答 案:由题意知,再切点处有两边对x求导得

更多推荐
微信扫码添加老师微信