2025年成考高起点《数学(理)》每日一练试题02月18日
精选习题
2025-02-18 12:21:57
收藏

单选题

1、曲线y=x+2在点(1,2)处的切线斜率为()。

  • A:1
  • B:2
  • C:-1
  • D:4

答 案:A

解 析:方法一:∵y=x+2,k=y’=1 方法二:也可用直线方程y=kx+b直接得出k=1。  

2、抛物线y2=4x上一点P到焦点F的距离是10,则点P坐标是()。

  • A:(9,6)
  • B:(9,±6)
  • C:(6,9)
  • D:(±6,9)

答 案:B

解 析:抛物线y2=4x的焦点为F(1,0),设点P坐标是(z,y),则有 解方程组,得x=9,y=±6,即点P坐标是(9,±6).(答案为B)

3、在△ABC中,已知2B= A+C,= ac,则B-A=()  

  • A:0
  • B:
  • C:
  • D:

答 案:A

解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因为2B=A+C,② 由①②得2B=π-B, 由③④得a=c。所以A=C,又所以△ABC为等边三角形,则B-A=0  

4、设函数f(x)=ex,则f(x-a)·f(x+a)=()。

  • A:f(x2-a2)
  • B:2f(x)
  • C:f(x2)
  • D:f2(x)

答 案:D

主观题

1、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。    

答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°

2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

3、(1)已知tanα=,求cot2α的值; (2)已知tan2α=1,求tanα的值。

答 案:(1)(2)由已知,得 解关于tanα的一元二次方程,得tanα=  

4、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

填空题

1、已知函数y=a2+bx+c的图像是以(6,-12)为顶点的抛物线,并且与x轴的一个交点坐标是(8,0),则a=(),b=(),c=()

答 案:  3;-36;96  

解 析:根据顶点坐标是(6,-12),设y=a(x-6)2-12(8,0)代入得:0=a*(8-6)2-12得到a=3
即y=3(x-6)2-12=3x2-36x+96
故a=3,b=-36,c=96

2、不等式的解集为()  

答 案:

解 析:

更多推荐
微信扫码添加老师微信
2025/10/19~2025/10/20
2 4 3
更多
准考证
2025年10月14日~10月20日
考试
2025年10月19日~10月20日
成绩查询
2025年11月20日~12月31日
入学
第二年3月