单选题
1、已知=
,则
=()。
答 案:C
解 析:
2、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()
答 案:B
解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为
3、曲线y=x+2在点(1,2)处的切线斜率为()。
答 案:A
解 析:方法一:∵y=x+2,k=y’=1 方法二:也可用直线方程y=kx+b直接得出k=1。
4、下列函数中为奇函数的是()。
答 案:D
解 析:对于D,f(-x)=(-x)3+tan(-x)=-(x3+tanx)=-f(x)。答案为D。
主观题
1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
2、设函数f(x)=
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求 f(x)的极值
答 案:(Ⅰ)函数的定义域为
(Ⅱ)
3、试证明下列各题
(1)
(2)
答 案:(1)化正切为正、余弦,通分即可得证。 (2)
4、已知时,化简式子f(sin2α)-f(- sin2α)。
答 案:由已知得, 填空题 1、若P(3,2)是连接P1(2,y)和P2(x,6)线段的中点,则x=______,y=______。
答 案:x=4,y=-2
解 析: 2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()
答 案: 解 析:原直线方程可化为
∴sinα
交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,
当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,