2025年成考高起点《数学(文史)》每日一练试题02月11日
精选习题
2025-02-11 12:16:51
收藏

单选题

1、在等比数列{an}中,a2=1,公比q=2,则a5=()。

  • A:
  • B:
  • C:4
  • D:8

答 案:D

解 析:本题主要考查的知识点为等比数列。

2、若集合M={(x,y)|3x-2y=-1},N={(x,y)|2x+3y=8},则M∩N=()。  

  • A:(1,2)
  • B:{1,2}
  • C:{(1,2)}
  • D:φ

答 案:C

解 析:M,N都是点集,所以只能选C。  

3、已知一个等差数列的第五项等于10,前三项的和等于3,那么这个等差数列的公差为()。

  • A:3
  • B:1
  • C:-1
  • D:-3

答 案:A

4、()  

  • A:8
  • B:14
  • C:12
  • D:10

答 案:B

解 析:

主观题

1、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度

答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm, 由题意得y-y0=kx,即y=kx+y0, 由已知条件得 解得k=0.2,y0=8. 所求函数关系式为y=0.2x+8,弹的原长为8CM  

2、设全集U=R,集合A={x|-5<x<5},B={x|0≤x≤7},求CUA∩B.

答 案:解:全集U=R,A={x|-5<x<5},B={X|0≤x≤7},因为CuA={x|x≤-5或x≥5},所以CuA∩B={x|x≤-5或x≥5}N{x|0≤x≤7}={x|5≤x≤7},如图1—10所示。

3、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

4、已知x+x-1=,求x2+x-2的值。  

答 案:由已知,得

填空题

1、设

答 案:-1

解 析:  

2、5个同学站成一排,其中某个人恰好站在排头的概率是______。  

答 案:

解 析:基本事件的总数n=5!,其中某人恰好站在排头的排法有m=4!种,所求概率为。  

更多推荐
微信扫码添加老师微信
2025/10/19~2025/10/20
2 5 0
更多
准考证
2025年10月14日~10月20日
考试
2025年10月19日~10月20日
成绩查询
2025年11月20日~12月31日
入学
第二年3月