2025年成考高起点《数学(理)》每日一练试题02月11日
精选习题
2025-02-11 12:14:44
收藏

单选题

1、如果点A(1,1)和B(2,4)关于直线y=kx+b对称,则k=()。

  • A:-3
  • B:
  • C:
  • D:3

答 案:B

解 析:本题主要考查的知识点为两垂直直线斜率的关系。直线AB的斜率为点A、B关于直线y=kx+b对称,因此直线AB与其垂直,故3k=-1,得

2、若,且α、β均为锐角,则β的值为()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:

3、设()

  • A:甲是乙的充分条件但不是必要条件
  • B:甲是乙的必要条件但不是充分条件
  • C:甲是乙的充要条件
  • D:甲既不是乙的充分条件也不是乙的必要条件

答 案:D

解 析:本题主要考查的知识点为简易逻辑 由于 故甲既不是乙的充分条件,也不是乙的必要条件

4、如果球的大圆面积增为原来的4倍,则该球的体积就增为原来的()。

  • A:4倍
  • B:8倍
  • C:12倍
  • D:16倍

答 案:B

解 析:

主观题

1、求下列函数的最大值、最小值和最小正周期: (1)(2)y=6cosx+8sinx

答 案:  

2、已知函数f(x)=(x-4)(x2-a) (I)求f"(x); (Ⅱ)若f"(-1)=8,求f(x)在区间[0,4]的最大值与最小值

答 案:

3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

4、试证明下列各题
(1)
(2)

答 案:(1)化正切为正、余弦,通分即可得证。 (2)

填空题

1、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()  

答 案:

解 析:由于a//b,故

2、在自然数1、2、…、100中任取一个数,该数能被3整除的概率是______。  

答 案:0.33

解 析:此题随机试验包含的基本事件总数n=100,且每个数能被取到的机会均等,即属于等可能事件的概率能被3整除的自然数的个数m=33,故所求概率  

更多推荐
微信扫码添加老师微信
2025/10/19~2025/10/20
2 5 0
更多
准考证
2025年10月14日~10月20日
考试
2025年10月19日~10月20日
成绩查询
2025年11月20日~12月31日
入学
第二年3月