2025年成考高起点《数学(理)》每日一练试题01月13日
精选习题
2025-01-13 12:12:40
收藏

单选题

1、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,  

2、i为虚数单位,則i•i2•i3•i4•i5的值为()。

  • A:1
  • B:-1
  • C:i
  • D:-i

答 案:D

解 析:i•i2•i3•i4•i5=i1+2+3+4+5=i15=-i

3、设F1和F2为双曲线的两焦点,点P在双曲线上,则||PF2|-|PF2||=()。

  • A:4
  • B:2
  • C:1
  • D:

答 案:A

解 析:由题意有a2=4.a=2,由双曲线的定义,可知||PF2|-|PF2||=2a=4.(答案为A)

4、若甲:x>1,乙:则  

  • A:甲是乙的必要条件,但不是乙的充分条件
  • B:甲是乙的充分必要条件
  • C:甲不是乙的充分条件,也不是乙的必要条件
  • D:甲是乙的充分条件,但不是乙的必要条件

答 案:D

解 析:故甲是乙的充分条件,但不是必要条件

主观题

1、已知数列{an}中,a1=2, (Ⅰ)求数列{an}的通项公式; (Ⅱ)求数列{an}前5项的和 S5

答 案:解:

2、已知一组数据9.9;10.3;9.8;10.1;10.4;10;9.8;9.7,计算这组数据的方差。  

答 案:

3、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和

答 案:  

4、

答 案:

填空题

1、ABCD是正方形,E是AB的中点,如将△DAE和△CBE分别沿虚线DE、CE折起,使AE与BE重合如图 ,设A与B重合后的点为P,则面PCD与面ECD所成的二面角为______度,PE与面ECD成______度。

答 案:二面角为30°,PE与面ECS成60角°  

解 析:(1)求面PCD与面ECD所成的二面角为多少度,就是要求出由平面PCD与平面ECD所组成的二面角的平面角,其中画出二面角的平面角是关键,因为二面角确定以后,二面角的平面角很容易画出(由二面角的平面角的定义)。求角度时,常用到勾股定理、正弦定理、余弦定理、兰垂线定理和逆定理。 (2)求PE与面ECD成多少度,就是求直线与平面所成的角是多少度。首先要找出平面的一条斜线(直线PE)和斜线的射影,斜线和射影所成的锐角,就是直线PE和平面ECD所成的角,再求出角度。 设CD的中点为F,练PF,EF
∵PC=PD,EC=ED.
∴PF⊥CD,EF⊥CD(三垂线定理)
∠PFE是二面角P-CD-E的平面角
∵PE⊥PC,PE⊥CD.
∴PE⊥平面PCD,又PF在平面PCD内
∴PE⊥PF
设正方形边长为1(如图) 故面PCD与面ECD所成的二面角为30°,PE与面ECS成60角°。

2、=______。  

答 案:0

解 析:

更多推荐
微信扫码添加老师微信
2025/10/19~2025/10/20
2 7 9
更多
准考证
2025年10月14日~10月20日
考试
2025年10月19日~10月20日
成绩查询
2025年11月20日~12月31日
入学
第二年3月