2024年成考高起点《数学(理)》每日一练试题12月30日
精选习题
2024-12-30 12:12:38
收藏

单选题

1、抛物线 y=ax2的准线方程是 y=2,则a=()。

  • A:
  • B:
  • C:8
  • D:-8

答 案:B

解 析:

2、若f(x+1)=x2-2x+3,则f(x)=()。

  • A:x2+2x+6
  • B:x2+4x+6
  • C:x2-2x+6
  • D:x2-4x+6

答 案:D

解 析:f(x+1)=x2-2x+3=(x+1)2-4(x+1)+6,∴f(x)=x2-4x+6。(答案为D)

3、在△ABC中,AB=4,BC=6,∠ABC=60°,则AC=()。

  • A:128
  • B:76
  • C:
  • D:

答 案:C

解 析:已知两边及夹角用余弦定理得 AC2=62+42-2×6×4cos60°=28 ∴AC=

4、在△ABC中,已知2B= A+C,= ac,则B-A=()  

  • A:0
  • B:
  • C:
  • D:

答 案:A

解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因为2B=A+C,② 由①②得2B=π-B, 由③④得a=c。所以A=C,又所以△ABC为等边三角形,则B-A=0  

主观题

1、某气象预报站天气预报的准确率为80%,计算(1)5次预报中恰有4次准确的概率; (2)5次中至少有次准确的概率.(计算结果保留两个有效数字).  

答 案:  把每次预报看做一次试验,“预报结果准确”看成事件P(A)=0.8,本题就相当于在5次独立重复试验中求A恰好发生4次(或至少4次)的概率,此题属于独立重复试验,由公式来求解。 (1)n=5;p=0.8;k=4 即恰有4次准确的概率为0.41. (2)5次至少有4次准确的概率,就是5次中恰有4次准确的概率与5次预报中都准确的概率的和,即 即至少有4次准确的概率为0.74。  

2、设a为实数,且tanα和tanβ是方程ax2+(2a-3)x+(a-2)=0的两个实根,求tan(α+β)的最小值。

答 案:由已知得

3、在△ABC中如果sinA=2sinBcosC,求证:△ABC是等腰三角形。  

答 案:∴△ABC为等腰三角形。

4、求下列函数的定义域: (1)
(2)
(3)  

答 案:(1) ∴函数的定义域为(2) ∴函数的定义域为(3)
由对数函数的性质知, 故函数的定义域为  

填空题

1、lgsinθ=a,lgcosθ=b,则sin2θ=______。  

答 案:2×10a+b

解 析: sin2θ=2sinθcosθ=2×10a×10b=2×10a+b  

2、100件产品中有3件次品,每次抽取一件,有放回的抽取三次,恰有1件是次品的概率是______。  

答 案:0.0847

解 析:由于三次抽取是独立的,每次抽取可看做是一次试验,每次试验只有两个可能结果:“正品”或“次品”,次品率为,因此二次独立且重复试验恰有1件次品率为  

更多推荐
微信扫码添加老师微信