单选题
1、过点A与圆x2+y2=1相切的直线方程是()
答 案:D
解 析:【考点指要】本题主要考查的内容是利用点到直线的距离公式求直线的斜率,从而写出所求的直线方程,这是考试大纲要求掌握的概念.从近几年的试题分析可知,这类题的深度在今后成人高考中有可能加大,希望考生予以足够的重视.
2、已知x+x-1=2cos40°,则x4+x-4=()。
答 案:B
解 析:由已知得(x+x-1)2=(2 cos 40°)2,x2+2+x-2=4cos240° x2+x-2=2(2 cos240°-1)= 2cos 80°同样可得x4+x-4=2 cos 160°=-2 cos 20°故选B。
3、已知sinα=,且540°<α<630°,则sin2α=()。
答 案:B
解 析:由已知,360°+180°<α<360°+270°,所以α是第三象限的角,故
4、设甲:四边形ABCD是平行四边形,乙:四边形ABCD是正方形,则()。
答 案:B
主观题
1、已知三角形的一个内角是,面积是
周长是20,求各边的长.
答 案:设三角形三边分别为a,b,c,∠A=60°,
2、求下列函数的最大值、最小值和最小正周期: (1)
2)y=6cosx+8sinx
答 案: 所以函数的最大值是
最小值是
最小正周期为2π,
(2)要将6cosx+8sinx化为sinαcosx+cosαsinx这种形式,需使cosx与sinx的系数平方和为1,为此,将已知函数化为
因此,函数的最大值是10,最小值是-10,最小正周期为2π
3、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.
答 案:因为{an}为等差数列,则
4、设椭圆的中心是坐标原点,长袖在x轴上,离心率,已知点P(0,3/2)到椭圆上的点的最远距离是
,求椭圆的方程。
答 案:
填空题
1、某学科的一次练习中,第一小组5个人成绩如下(单位:分):98,89,70,92,90,则分数的样本方差为__________.
答 案:88.96
解 析:平均分 【考点指要】本题主要考查样本的平均数与方差的计算.对于统计问题,只需记清概念和公式,计算时不出错即可.
2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。
答 案:
解 析:本题主要考查的知识点为圆的切线.
设切点(x0,y0)则有
即
所以
故切点横坐标为