单选题
1、函数与y
的图像之间的关系是
答 案:D
解 析:关于y轴对称,
2、已知sinx,则x所在象限是()
答 案:C
解 析:=sinx|sinx|+cosx|cosx|,当sinx、cosx均为负时,有
故x在第三象限
3、若A(-3,5),B(-5,-3),则线段AB中点的坐标为()。
答 案:B
4、已知点M(-2,5),N(4,2),点P在上,且
=1:2,则点P的坐标为()
答 案:B
解 析:由题意得:
主观题
1、求下列函数的最大值、最小值和最小正周期: (1)
2)y=6cosx+8sinx
答 案: 所以函数的最大值是
最小值是
最小正周期为2π,
(2)要将6cosx+8sinx化为sinαcosx+cosαsinx这种形式,需使cosx与sinx的系数平方和为1,为此,将已知函数化为
因此,函数的最大值是10,最小值是-10,最小正周期为2π
2、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度
答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm,
由题意得y-y0=kx,即y=kx+y0,
由已知条件得
解得k=0.2,y0=8.
所求函数关系式为y=0.2x+8,弹的原长为8CM
3、设(0<α<π),求tanα的值。
答 案:
4、求函数(x∈R)的最大值与最小值。
答 案:设sinx+cosx=t,则(sinx+cosx)2=t2,1+2sinxcosx=t2,sinxcosx=
于是转化为求
的最值。
由所设知
上为增函数,故g(t)的最大值为
最小值为
填空题
1、“x2=4”是“x=2”的______。
答 案:必要不充分条件
2、与已知直线7x+24y-5=0平行,且距离等于3的直线方程是______。
答 案:7x+24y+70=0或7x+24y-80=0
解 析:设要求的直线方程为7x+24y+c=0, ∵直线7x+24y+c=0到直线7x+24y-5=0的距离等于3
∴
∴.C=70或-80.
故所求的直线方程为7x+24y+70=0或7x+24y-80=0