2024年成考高起点《数学(文史)》每日一练试题11月09日
精选习题
2024-11-09 12:10:58
收藏

单选题

1、函数y=sin(x+11)的最大值是()。

  • A:11
  • B:1
  • C:-1
  • D:-11

答 案:B

解 析:本题主要考查的知识点为三角函数的值域。 因为-1≤sin(wx+q)≤1,所以-1≤sin(x+11)≤1,故y=sin(x+11)的最大值为1。

2、已知sinα=,且540°<α<630°,则sin2α=()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:由已知,360°+180°<α<360°+270°,所以α是第三象限的角,故

3、若a,b,c分别表示△ABC的顶点A,B,C所对的边长,且(a+b+c)(a+b-c)=3ab,cos(A+B)=()。

  • A:
  • B:
  • C:
  • D:

答 案:A

4、已知一个等差数列的第五项等于10,前三项的和等于3,那么这个等差数列的公差为()。

  • A:3
  • B:1
  • C:-1
  • D:-3

答 案:A

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

2、设3a=5b=15,求a-1+b-1的值。  

答 案:由3a=15,得a=log315;又由5b=15,得b=log515。 因此a-1+b-1= =log153+log155=1。

解 析:过程中应用了换底公式的推论,即

3、计算  

答 案:

4、求下列函数的最大值、最小值和最小正周期: (1) 2)y=6cosx+8sinx

答 案: 所以函数的最大值是最小值是最小正周期为2π, (2)要将6cosx+8sinx化为sinαcosx+cosαsinx这种形式,需使cosx与sinx的系数平方和为1,为此,将已知函数化为 因此,函数的最大值是10,最小值是-10,最小正周期为2π

填空题

1、“a>b”是“a-c>b-c”的______。

答 案:充要条件

2、  

答 案:

解 析: 【考点指要】本题主要考查三角函数的最大值、最小值及值域的求法,解题时需要灵活运用诱导公式、二倍角公式以及辅助角公式,当函数可以化

更多推荐
微信扫码添加老师微信