2024年成考高起点《数学(文史)》每日一练试题07月27日
精选习题
2024-07-27 12:08:31
收藏

单选题

1、设M=那么()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析: M是集合,a为元素,{a}为集合,元素与集合的关系是集合与集合的关系是  

2、函数的图像与直线y=4的交点坐标为()

  • A:(0,4)
  • B:(4,64)
  • C:(1,4)
  • D:(4,16)

答 案:C

解 析:令y=4x=4,解得x=1,故所求交点为(1,4).

3、已知成等差数列,且为方程的两个根,则的值为()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由根与系数的关系得由等差数列的性质得

4、若函数y=f(x)在[-1,1]上是单调函数,则使得y=f(sinx)必为单调函数的区间是()  

  • A:R
  • B:[-1,1]
  • C:
  • D:[-sin1 ,sin1]

答 案:C

解 析:y=f(x)在[-1,1]上是单调函数,所以y=f(x)的单调区间为[-1,1]  

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

2、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积

答 案:

3、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

4、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

填空题

1、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

2、函数y=-x²+ax图像的对称轴为x=2,则a=______。

答 案:4  

解 析:本题主要考查的知识点为二次函数的性质。 由题意,该函数图像的对称轴为得a=4。

更多推荐
微信扫码添加老师微信