2024年成考高起点《数学(理)》每日一练试题07月04日
精选习题
2024-07-04 12:16:50
收藏

单选题

1、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),则a,b的值为  

  • A:a=2,b=1
  • B:a=1,b=1
  • C:a=1,b= 2
  • D:a=1,b=5

答 案:C

解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因为M中无“1”元素,而有“a”元素,只有a=1 而N中无“2”元素,而有“b元素”,只有b=2  

2、设双曲线的渐近线的斜率为k,则|k|=()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:双曲线渐近线的斜率为k故本题中k

3、函数的定义域是()

  • A:{x|-3<x<-1}
  • B:{x|x<-3或x>-1}
  • C:{x|1<x<3}
  • D:{x|x<1或x>3}

答 案:D

解 析:由对数函数的性质可知,解得x>3或x<1,因此函数的定义域为{x|x<1或x>3}

4、若()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:首先做出单位圆,然后根据问题的约束条件,利用三角函数线找出满足条件的a角取值范围  

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

2、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

3、已知函数f(x)=(x-4)(x2-a) (I)求f"(x); (Ⅱ)若f"(-1)=8,求f(x)在区间[0,4]的最大值与最小值

答 案:

4、已知等差数列{an}中,a1+a2+a3=6,a2+a4+a5= 12求{an}的首项与公差。  

答 案:因为{an}为等差数列,

填空题

1、函数的图像与坐标轴的交点共有()  

答 案:2

解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有故函数与x轴交于(1,0) 点,因此函数 与坐标轴的交点共有 2个.

2、函数y=-x2+ax图像的对称轴为x=2,则a=______。  

答 案:4

解 析:本题主要考查的知识点为二次函数的性质 由题意,该函数图像的对称轴为

更多推荐
微信扫码添加老师微信