单选题
1、设f(x)=x3+ax2+x为奇函数,则a=()。
答 案:B
解 析:本题主要考查的知识点为函数的奇偶性. 因为f(x)为奇函数,故f(-x)=-f(x)。即-x3+ax2-x=-x3-ax2-x,a=0。
2、在的展开式中,
的系数是
答 案:D
解 析:直接套用二项式展开公式:
注:展开式中第r+1项的二项式系数
与第r+1项的系数不同,此题不能只写出
就为
的系数
3、已知复数z=a+bi,其中a,且b≠0,则()
答 案:C
解 析:注意区分
4、如果点A(1,1)和B(2,4)关于直线y=kx+b对称,则k=()。
答 案:B
解 析:本题主要考查的知识点为两垂直直线斜率的关系。直线AB的斜率为点A、B关于直线y=kx+b对称,因此直线AB与其垂直,故3k=-1,得
主观题
1、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每
的造价为15元,池底每
的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:
2、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=
+80x-306
法一:用二次函数
当a<0时有最大值
是开口向下的抛物线,有最大值
法二:用导数来求解
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
4、已知数列的前n项和
求证:
是等差数列,并求公差和首项。
答 案:
填空题
1、曲线y=在点(1,1)处的切线方程是______。
答 案:2x+y-3=0
解 析:本题主要考查的知识点为切线方程
由题意,该切线斜率,
又过点(1,1),所以切线方程为y-1=-2(x-1)
2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()
答 案:
解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,
当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,