2024年成考专升本《高等数学一》每日一练试题06月17日
考试问答
2024-06-17 11:26:59
收藏

单选题

1、微分方程的阶数为()。

  • A:1
  • B:2
  • C:3
  • D:4

答 案:B

解 析:所给方程含有未知函数y的最高阶导数是2阶,因此方程的阶数为2。

2、如果级数收敛,那么以下级数收敛的是()。

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:A项。级数收敛,则收敛;由极限收敛的必要条件可知,=0,则B项,=1;C项,;D项,

3、设y=x+lnx,dy=()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:y=x+lnx,则

主观题

1、设f(x,y)为连续函数,交换二次积分的积分次序。

答 案:解:由题设知中积分区域的图形应满足1≤x≤e,0≤y≤lnx,因此积分区域的图形见下图中阴影部分.由y=lnx,有x=ey。所以

2、求

答 案:解:方法一:(洛必达法则)方法二:(等价无穷小)

3、求函数y=xex的极小值点与极小值

答 案:解:方法一:令y'=0,得x=-1。
当x<-1时,y'<0;当x>-1时,y'>0。
故极小值点为x=-1,极小值为
方法二:,
令y'=0,得x=-1,又
故极小值点为x=-1,极小值为

填空题

1、交换二次积分的积分次序,()。

答 案:

解 析:由题设有从而故交换次序后二次积分为

2、设z=arctanxy,则=()。

答 案:

解 析:,故

3、过点M0(1,-1,0)且与平面x-y+3z=1平行的平面方程为=()。

答 案:x-y+3z=2

解 析:已知平面的法向量n1=(1,-1,3),所求平面π与π1平行,则平面π的法向量n//n1,取n=(1,-1,3),所求平面过点M0=(1,-1,0),由平面的点法式方程可知所求平面方程为,即x-y+3z=2。

简答题

1、已知函数f(x)连续,且满足,求f(x).  

答 案:由于两边同时求导得所以

更多推荐
微信扫码添加老师微信