2024年成考高起点《数学(文史)》每日一练试题06月11日
精选习题
2024-06-11 12:06:19
收藏

单选题

1、设集合 ()。

  • A:{1}
  • B:{-1}
  • C:{—1,1)
  • D:

答 案:A

解 析:本题主要考查的知识点为集合的运算。 由题意M={-1,1},N={1},所以M∩N=(1}。  

2、在△ABC中,三边为a、b、c,∠B=60°,则的值是()  

  • A:大于零
  • B:小于零
  • C:等于零
  • D:不能确定

答 案:C

解 析:由已知用余弦定理得:  

3、的导数是  

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

4、已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为()  

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:由已知条件知双曲线焦点在x轴上属于第一类标准式,又知c=5,2a=6, ∴a=3,∴所求双曲线的方程为  

主观题

1、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

2、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积

答 案:

3、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

4、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。

答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为

填空题

1、函数y=-x²+ax图像的对称轴为x=2,则a=______。

答 案:4  

解 析:本题主要考查的知识点为二次函数的性质。 由题意,该函数图像的对称轴为得a=4。

2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

更多推荐
微信扫码添加老师微信