2024年成考高起点《数学(文史)》每日一练试题06月03日
精选习题
2024-06-03 12:12:38
收藏

单选题

1、设集合 ()。

  • A:{1}
  • B:{-1}
  • C:{—1,1)
  • D:

答 案:A

解 析:本题主要考查的知识点为集合的运算。 由题意M={-1,1},N={1},所以M∩N=(1}。  

2、()  

  • A:8
  • B:14
  • C:12
  • D:10

答 案:B

解 析:

3、直线2x-y+7=0,与圆的位置关系是()  

  • A:相离
  • B:相交但不过圆心
  • C:相切
  • D:相交且过圆心

答 案:C

解 析:易知圆心坐标(1,-1),圆心到直线2x-y+7=0的距离d ∵圆的半径 ∴d=r,∴直线与圆相切  

4、已知点M(1,2),N(2,3),则直线MN的斜率为()。

  • A:
  • B:1
  • C:-1
  • D:

答 案:B

解 析:本题主要考查的知识点为直线的斜率。 直线MN的斜率为

主观题

1、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

2、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P到圆上的点的最远距离是求椭圆的方程  

答 案:由题意,设椭圆方程为 设P点到椭圆上任一点的距离为 d, 则在y=-b时,最大,即d也最大。  

3、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

4、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。

答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6

填空题

1、不等式的解集是()  

答 案:

解 析:

2、()

答 案:3

解 析:

更多推荐
微信扫码添加老师微信