单选题
1、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。
答 案:A
解 析:本题主要考查的知识点为随机事件的概率
一次取出2件均为正品的概率为
2、在的展开式中,
的系数是
答 案:D
解 析:直接套用二项式展开公式:
注:展开式中第r+1项的二项式系数
与第r+1项的系数不同,此题不能只写出
就为
的系数
3、在△ABC中,若b=,c=
则a等于()
答 案:B
解 析:此题是已知两边和其中一边的对角,解三角形时,会出现一解、两解、无解的情况,要注意这一点.用余弦定理可得
解出
4、已知偶函数y=f(x),在区间[a,b](0 答 案:B 解 析:由偶函数的性质:偶函数在[a,b]和[-b,-a]上有相反的单调性,可知,y=f(x)在区间[a,b](0f(-a),所以f(x)在[-b,-a]上是减函数。 主观题 1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得 答 案:如图, 2、建筑一个容积为8000 答 案: 3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程; 答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得 4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c. 答 案:由已知得 填空题 1、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
答 案: 解 析:由于a//b,故 2、lg(tan43°tan45°tan47°)=()
答 案:0 解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0AB=120m,求河的宽
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
,深为6m的长方体蓄水池,池壁每
的造价为15元,池底每
的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
(II)求f(x)的极值.当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
解得