2024年成考专升本《高等数学一》每日一练试题04月09日
精选习题
2024-04-09 11:38:42
收藏

单选题

1、设y(n-2)=sinx,则y(n)=()  

  • A:cosx
  • B:-cosx
  • C:sinx
  • D:-sinx

答 案:D

解 析:因此

2、()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由不定积分的基本积分公式可得,

3、已知f(xy,x-y)=等于()

  • A:2
  • B:2x
  • C:2y
  • D:2x+2y

答 案:A

解 析:因f(xy,x-y)==从而

主观题

1、设f(x)是以T为周期的连续函数,a为任意常数,证明:

答 案:证:因为令x=T+t,做变量替换得

2、求微分方程的通解。

答 案:解:为一阶线性微分方程,则

3、求微分方程的通解.

答 案:解:对应齐次微分方程的特征方程为,解得r1=3,r2=-2.所以齐次通解为。设方程的特解设为y*=(Ax+B)ex,代入原微分方程可解得,A=,B=.即非齐次微分方程特解为。所以微分方程的通解为

填空题

1、函数在[1,2]上符合拉格朗日中值定理的=_。

答 案:

解 析:由拉格朗日中值定理有解得,其中=-(舍),得

2、=()。

答 案:

解 析:

3、=()。

答 案:

解 析:所给求极限的表达式为分式,x=1时分母不为零,可将x=1直接代入函数求得极限

简答题

1、求  

答 案:

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
1 3 7
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月