2024年成考高起点《数学(理)》每日一练试题03月02日
精选习题
2024-03-02 12:13:59
收藏

单选题

1、展开式中,末3项的系数(a,x 均未知) 之和为()  

  • A:22
  • B:12
  • C:10
  • D:-10

答 案:C

解 析:末三项数之和为

2、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知向量a=(2,3,m),故,解得m=0.

3、方程的图像是下图中的()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本题属于读图题型,在寻求答案时,要着重讨论方程的表达式  

4、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,则△ABC是()

  • A:以A为直角的三角形
  • B:b=c的等腰三角形
  • C:等边三角形
  • D:钝角三角形

答 案:B

解 析:判断三角形的形状,条件是用一个对数等式给出先将对数式利用对数的运算法则整理。 ∵lgsinA-lgsinB-lgcos=lg2,由对数运算法则可得,左 两个对数底数相等则真数相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故为等腰三角形

主观题

1、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  

答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  

2、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

3、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

填空题

1、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  

答 案:

解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,

2、的展开式是()

答 案:

解 析:

更多推荐
微信扫码添加老师微信