2024年成考高起点《数学(理)》每日一练试题02月15日
精选习题
2024-02-15 12:16:33
收藏

单选题

1、设函数,则f(x+1)=()

  • A:x2+2x+1
  • B:x2+2x
  • C:x2+1
  • D:x2

答 案:B

解 析:

2、给出下列两个命题:①如果一条直线与一个平面垂直,则该直线与该平面内的任意一条直线垂直②以二面角的棱上任意一点为端点,在二面角的两个面内分别作射线,则这两条射线所成的角为该二面角的平面角.则()

  • A:①②都为真命题
  • B:①为真命题,②为假命题
  • C:①为假命题,②为真命题
  • D:①②都为假命题

答 案:B

解 析:一条直线与平面垂直,则直线与平面内的任意一条直线垂直,故①为真命题;二面角的两条射线必须垂直于二面角的棱,故②为假命题,因此选B选项.

3、若甲:x>1,乙:则  

  • A:甲是乙的必要条件,但不是乙的充分条件
  • B:甲是乙的充分必要条件
  • C:甲不是乙的充分条件,也不是乙的必要条件
  • D:甲是乙的充分条件,但不是乙的必要条件

答 案:D

解 析:故甲是乙的充分条件,但不是必要条件

4、已知全集U=R,A={x|x≥1},B={x|-1

  • A:{x|x≤2}
  • B:{x|x<2}
  • C:{x|-1
  • D:{x|-1

答 案:A

解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,  

主观题

1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

4、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

填空题

1、的展开式是()

答 案:

解 析:

2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

更多推荐
微信扫码添加老师微信
2024/10/19~2024/10/20
8 7
更多
准考证
2024年10月14日~10月20日
考试
2024年10月19日~10月20日
成绩查询
2024年11月25日~12月31日
入学
第二年3月