2024年成考高起点《数学(理)》每日一练试题01月11日
精选习题
2024-01-11 12:16:45
收藏

单选题

1、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,  

2、在的展开式中,的系数是

  • A:448
  • B:1140
  • C:-1140
  • D:-448

答 案:D

解 析:直接套用二项式展开公式: 注:展开式中第r+1项的二项式系数与第r+1项的系数不同,此题不能只写出就为的系数  

3、已知,则sin2α=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:两边平方得,故

4、已知全集U=R,A={x|x≥1},B={x|-1

  • A:{x|x≤2}
  • B:{x|x<2}
  • C:{x|-1
  • D:{x|-1

答 案:A

解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,  

主观题

1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

2、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

4、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直  

填空题

1、不等式的解集为()  

答 案:

解 析:

2、的展开式是()

答 案:

解 析:

更多推荐
微信扫码添加老师微信