单选题
1、下列函数中,为奇函数的是()
答 案:B
解 析:当f(-x)=-f(x)时,函数f(x)是奇函数,四个选项中只有选项B符合,故选B选项.
2、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()
答 案:D
解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
3、函数与y
的图像之间的关系是
答 案:D
解 析:关于y轴对称,
4、已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为()
答 案:A
解 析:由已知条件知双曲线焦点在x轴上属于第一类标准式,又知c=5,2a=6, ∴a=3,∴所求双曲线的方程为
主观题
1、设函数f(x)且f'(-1)=-36
(Ⅰ)求m
(Ⅱ)求f(x)的单调区间
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
当x<-3时,f'(x)>0;
当-3
2、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
3、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P
到圆上的点的最远距离是
求椭圆的方程
答 案:由题意,设椭圆方程为 由
设P
点到椭圆上任一点的距离为 d,
则在y=-b时,
最大,即d也最大。
4、已知三角形的一个内角是,面积是
周长是20,求各边的长.
答 案:设三角形三边分别为a,b,c,∠A=60°,
填空题
1、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()
答 案:6
解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.
2、从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是()
答 案:252.84
解 析:
=252.84