2024年成考专升本《高等数学一》每日一练试题01月05日
精选习题
2024-01-05 11:30:01
收藏

单选题

1、设收敛,sn=,则sn()。

  • A:必定存在且值为0
  • B:必定存在且值可能为0
  • C:必定存在且值一定不为0
  • D:可能不存在

答 案:B

解 析:由级数收敛的定义,级数的前n项和存在,则级数必收敛。

2、设y(n-2)=sinx,则y(n)=()  

  • A:cosx
  • B:-cosx
  • C:sinx
  • D:-sinx

答 案:D

解 析:因此

3、=()。

  • A:4+3ln2
  • B:2+3ln2
  • C:4-3ln2
  • D:2-3ln2

答 案:D

解 析:

主观题

1、将展开为x的幂级数。

答 案:解:因为,所以

2、求微分方程的通解。

答 案:解:对应的齐次方程为。特征方程,特征根齐次方程通解为原方程特解为,代入原方程可得,因此
方程通解为

3、将函数展开为x的幂级数,并指出收敛区间(不讨论端点)。

答 案:解:,有,即收敛区间为(-4,4)。

填空题

1、=()。

答 案:1

解 析:

2、设f(x)=3x,g(x)=x3,则=()。

答 案:·1n3

解 析:g(x)=x3,g'(x)=3x2,则=f'(3x2),注意等号右端的含义为f()在=3x2处的导数,而f(x)=3x,即f()=,则ln3,所以

3、设y=x3+2,则y''=()。

答 案:6x

解 析:

简答题

1、若函数在x=0处连续。求a。

答 案:由 又因f(0)=a,所以当a=-1时,f(x)在x=0连续。  

更多推荐
微信扫码添加老师微信