主观题
1、设椭圆的中心是坐标原点,长轴在x轴上,离心率
已知点P
到圆上的点的最远距离是
求椭圆的方程
答 案:由题意,设椭圆方程为
由
设P
点到椭圆上任一点的距离为 d,
则在y=-b时,
最大,即d也最大。

2、已知三角形的一个内角是
,面积是
周长是20,求各边的长.
答 案:设三角形三边分别为a,b,c,∠A=60°,
3、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为
,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
4、已知等差数列
前n项和
(Ⅰ)求通项
的表达式
(Ⅱ)求
的值
答 案:(Ⅰ)当n=1时,由
得
也满足上式,故
=1-4n(n≥1)
(Ⅱ)由于数列
是首项为
公差为d=-4的等差数列,所以
是首项为
公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:

填空题
1、点(4,5)关于直线y=x的对称点的坐标为()
答 案:(5,4)
解 析:点(4,5)关于直线y=x的对称点为(5,4).
2、设
则
答 案:-1
解 析: