单选题
1、函数的定义域是()
答 案:D
解 析:由题可知x2-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.
2、甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是
答 案:C
解 析:由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率为P(A)=乙袋内摸到白球的概率为
,所以现从两袋中各提出一个球,摸出的两个都是白球的概率为
3、已知sinx,则x所在象限是()
答 案:C
解 析:=sinx|sinx|+cosx|cosx|,当sinx、cosx均为负时,有
故x在第三象限
4、函数y=2sinxcosx的最小正周期是()
答 案:D
解 析:y=2sinxcosx=sin2x,故其最小正周期
主观题
1、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.
答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x)
整理得y=+30x+1800
配方得y=
+1875
当x=5时,y有最大值,所以每亩地最多种25棵
2、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
3、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)
答 案:如图
4、已知等差数列前n项和
(Ⅰ)求通项
的表达式
(Ⅱ)求
的值
答 案:(Ⅰ)当n=1时,由得
也满足上式,故
=1-4n(n≥1)
(Ⅱ)由于数列
是首项为
公差为d=-4的等差数列,所以
是首项为
公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
填空题
1、不等式的解集是()
答 案:
解 析:或
或
2、函数的图像与坐轴的交点共有()个
答 案:2
解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有
故函数与工轴交于(1,0)点,因此函数
与坐标轴的交点共有2个