2023年成考高起点《数学(文史)》每日一练试题12月17日
精选习题
2023-12-17 12:07:35
收藏

单选题

1、()  

  • A:8
  • B:14
  • C:12
  • D:10

答 案:B

解 析:

2、下列函数中,为减函数的是()

  • A:y=cosx
  • B:
  • C:
  • D:

答 案:C

解 析:由对数函数的性质可知,当底数大于0小于1时,在定义域内,对数函数为减函数,故选C选项.

3、函数的定义域是()

  • A:{x|-3≤x≤-1}
  • B:{x|x≤-3或x≥-1}
  • C:{x|1≤x≤3}
  • D:{x|x≤1或x≥3}

答 案:D

解 析:由题可知x2-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.

4、在△ABC中,三边为a、b、c,∠B=60°,则的值是()  

  • A:大于零
  • B:小于零
  • C:等于零
  • D:不能确定

答 案:C

解 析:由已知用余弦定理得:  

主观题

1、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积

答 案:

2、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

4、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

填空题

1、函数的图像与坐轴的交点共有()个  

答 案:2

解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有故函数与工轴交于(1,0)点,因此函数与坐标轴的交点共有2个

2、()

答 案:3

解 析:

更多推荐
微信扫码添加老师微信