答 案:D
解 析:
主观题
1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得
当
时,f'(x)时,f'(x)>O.故f(x)在区间
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
2、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
关于基底{a,b,c}的分解式
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)

(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
3、建筑一个容积为8000
,深为6m的长方体蓄水池,池壁每
的造价为15元,池底每
的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:

4、在△ABC中,B=120°,BC=4,△ABC的面积为
,求AC.
答 案:由△ABC的面积为
得
所以AB =4.因此
所以
填空题
1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
答 案:7
解 析:由题可知长方体的底面的对角线长为
,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为
2、函数
的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=
-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有
故函数与x轴交于(1,0) 点,因此函数
与坐标轴的交点共有 2个.