单选题
1、设甲:;乙:
.则()
答 案:A
解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.
2、函数与y
的图像之间的关系是
答 案:D
解 析:关于y轴对称,
3、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则这2个球都为红球的概率为()
答 案:C
解 析:两个球都是红球的概率为
4、不等式|2x-3|≤1的解集为()
答 案:A
解 析:故原不等式的解集为{x|1≤x≤2}
主观题
1、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P
到圆上的点的最远距离是
求椭圆的方程
答 案:由题意,设椭圆方程为 由
设P
点到椭圆上任一点的距离为 d,
则在y=-b时,
最大,即d也最大。
2、设函数f(x)且f'(-1)=-36
(Ⅰ)求m
(Ⅱ)求f(x)的单调区间
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
当x<-3时,f'(x)>0;
当-3
3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
得
设A(x1,y1).B(x2,y2),则
因此
4、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积
答 案:
填空题
1、设则
答 案:-1
解 析:
2、函数的图像与坐轴的交点共有()个
答 案:2
解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有
故函数与工轴交于(1,0)点,因此函数
与坐标轴的交点共有2个