单选题
1、已知α∩β=a,b⊥β,b在α内的射影是b’,那么b'和α的关系是()
答 案:B
解 析: ∴由三垂线定理的逆定理知,b在α内的射影b'⊥α,故选B
2、如果不共线的向量a和b有相等的长度,则(a+b)(a-b)=()
答 案:A
解 析:(a+b)(a-b)=
3、设集合M={x||x-2|<1},N={x|x>2},则M∩N=()
答 案:C
解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}
4、下列函数中,为奇函数的是()
答 案:B
解 析:当f(-x)=-f(x),函数f(x)是奇函数,只有选项B符合.
主观题
1、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=
+80x-306
法一:用二次函数
当a<0时有最大值
是开口向下的抛物线,有最大值
法二:用导数来求解
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
2、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
和
关于基底{a,b,c}的分解式;
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
3、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
4、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得
所以AB =4.因此
所以
填空题
1、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有
故函数与x轴交于(1,0) 点,因此函数
与坐标轴的交点共有 2个.
2、的展开式是()
答 案:
解 析: